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Summary 

Statistical analyses of performance and design parameters are shown to 
be extremely useful in improving product consistency for aerospace cells by 
highlighting significant differences between lots. 

Considerable amounts of data are customarily taken on aerospace 
nickel-cadmium cells to control manufacture, to verify that the cells will be 
acceptable, and to select well-matched cells for assembly into batteries. 
These data provide an opportunity for statistical analysis on data distribu- 
tion and the interrelationships between parameters. This information can 
be helpful in understanding behavior, for use in quality control, and in iden- 
tifying possible problems with individual cells or with lots of cells and even 
for manufacturing process control (Table 1). This is also a logical approach 
for analysis of a common data pool for Ni/Cd cells. Since the data required 

TABLE 1 

Advantages of statistical data analysis 

Technology 
l Investigate interrelationships between parameters 
l Help understand behavior 

Manufacturing processing control 
l Identify long-term changes in processes 
l Identify batch-to-batch differences 
l Common data pool for Ni/Cd cells 

Quality control 
l Identify problems with individual cells 
l Identify problems with cell lots 
l Help select matched cells for batteries 

cost 
l Data are already available 
l Computerized data-handling will save money 
l Analysis can help screen out unnecessary tests 
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TABLE 2 

Basis for analysis 

30 A h sealed Ni-Cd cells 
Used manufacturing data and cell 
matching data 
213 data parameters were investigated ; 
e.g., 

l Plate thickness 
l Amount of electrolyte 
l Weight of active material 
0 Positive and negative capacity 
l Charge-discharge behavior 
l Many others 

Multiple manufacturing lots 

TABLE 3 

Statistical analysis 

l Maximum and minimum values 
l Arithmetic mean 
0 Variance 
l Standard deviation 
l Skewness 
l Kurtosis 
l Data histograms 
l Correlations between test events 

for analysis are already available during manufacture, there is little additional 
cost involved for data acquisition. In fact, computerized data handling will 
save money in data processing. Furthermore, data analysis should be able to 
help screen out unnecessary tests, for additional cost saving. 

A statistical analysis was performed on sealed nickel-cadmium cell 
manufacturing data and cell matching data. The cells subjected to the analysis 
Were 30 A h sealed Ni/Cd cells made by General Electric Co. A total of 213 
data parameters was investigated, including such information as plate thick- 
ness, amount of electrolyte added, weight of active material, positive and 
negative capacity, and charge-discharge behavior (Table 2). Statistical 
parameters determined include the maximum and minimum values, arith- 
metic mean, variance, standard deviation, skewness, kurtosis, and data 
histograms (Table 3 and Fig. 1). Statistical analyses were made to determine 
possible correlations between test events; for example, if there is any connec- 
tion between end of charge voltage and pressure, or between electrolyte 
amount and capacity. 

The data show many departures from normal distribution. Some de- 
partures are inherent in the physical behavior of cells, and others are due to 
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Fig. 1. Schematic representation of statistical terms used. 
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TABLE 4 

Pressure effects 

Pressure at 72 h of charge us. 

Voltage at 72 h 
Pressure at 20 h 
Pressure at 120 min of discharge 
Pressure at end of charge, last cycle 

Correlation coefficient 

Lot5 Lot 6 Lot7 Lot8 

0.097 0.390 0.264 0.255 
0.663 0.589 0.447 0.792 
0.492 0.582 0.916 0.799 
0.484 0.343 0.604 -0.222 

TABLE 5 

Open circuit voltage effects 

Open circuit voltage 24 h after 
removing shorting wires us. 

Correlation coefficient 

Lot5 Lot6 Lot 7 Lot.8 

OCV 1.0 h after removing wires 
OCV 24 h after 15 A, 1.0 min charge 

following 16 h shorting 

0.306 0.319 0.942 0.972 
-0.054 0.637 0.003 0.998 

TABLE 6 

Cell thickness effects 

Cell center thickness us. Correlation coefficient 

Lot8 

OCV 24 h after 15 A, 1.0 min charge following 16 h shorting 0.996 
Final cell weight 0.997 

manufacturing bias. For example, in one lot of cells, the data fall in two 
distinct groups, which were identified as caused by manufacturing variations 
from batch processing. Skewing of pressure data sometimes occurred very 
strongly and appeared to be related to removal and rework of the high 
pressure cells. 

Statistical relationships between data obtained during one test event 
and another were also obtained. The analysis used was the rank-difference 
method for coefficient of correlation, producing coefficients that can range 
from -1.0 to +l.O for perfect negative correlation and perfect positive 
correlation, respectively. Completely random results would yield a corre- 
lation of 0. For example, the relationship.between cell pressures for 30 A h 
cells at two unrelated test conditions was evaluated 20 h into the charge 
at 3.0 A and 75 “F uersus 72 h into the charge at 1.5 A and 32 “F. Correla- 
tion coefficients for five lots averaged 0.62, showing that there is a definite 
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TABLE 7 

End of charge voltage effects 

End of charge voltage at cycle 31 us. Correlation coefficient 

Lot5 Lot6 Lot 7 Lot 8 

EOCV at cycle 1 1.000 1.000 1.000 0.999 
Capacity to 1.0 V 0.999 1.000 0.871 0.990 
KOH final volume 0.131 -0.061 0.186 0.976 

TABLE 8 

Capacity effects 

Capacity to 1.0 V (C/ 10 chg. 14 h, Correlation coefficient 
C/2 disch. 75 “F) us. 

Lot 5 Lot 6 Lot7 Lot8 

Capacity to 1.15 V, same test (B) 0.996 0.999 0.912 0.560 
Capacity to 1.0 V, test 7 0.191 -0.116 0.187 0.811 
End of charge voltage, cycle 31 0.999 1.000 0.871 0.980 

relationship (Table 4). Pressure at 72 h of charge also correlates with pres- 
sure after 2 h of discharge. Pressure does not correlate very well with voltage, 
however, and its correlation with pressure at the end of charge on the last 
cycle is good for only one of the four lots. 

Sometimes two parameters would show a strong positive correlation 
for some lots but not for others. This behavior appeared to be the result of 
important differences between lots. In analyses of five lots, this was found 
to be the case for correlations of pressure uersus voltage (ranging from 0.097 
to 0.47), early life pressure versus pressure after cycling (ranging from 
-0.187 to 0.604), end of charge voltage uersus KOH volume (ranging from 
0.026 to 0.987), open circuit voltage 24 h after removing shorting wires 
uersus 1.0 h afterwards (ranging from 0.306 to 0.972, Table 5), and also 
uersus open circuit voltage 24 h after 15 A, 1.0 min charge following 16 h 
shorting (-0.054 to 0.998, Table 5). 

Occasionally, there are interesting surprises, though upon reflection 
these are understandable. For example, the thickness of the cells, measured 
at the center, correlates very well with the final cell weight (Table 6), and 
also correlates well with the open circuit voltage 24 h after a 15 A, 1.0 min 
charge following 16 h shorting. Data are not available to determine whether 
these correlations would hold for other lots also. 

The end of charge voltage after 31 cycles is found to correlate well 
with that same voltage at the first cycle (Table 7). It also correlates well 
with capacity. In only one of the four lots did the KOH final volume and 
the end of charge voltage appear to be related. 
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The capacity to 1.0 V and the capacity to 1.15 V were found to be 
closely related, though with some departure for one of the lots. Interesting- 
ly, the capacity to 1.0 V on one test did not correlate, for three of the four 
lots, with the capacity to 1.0 V for another test (Table 8). The test condi- 
tions for test 7 were C/20 charge for 72 h at 0 “C, and discharge at C/2 at 
0 “c. 

Product consistency from one lot to another is an important criterion 
for aerospace applications. It is clear from these examples that there are 
some significant differences between these lots. Statistical analyses are seen 
to be an excellent way to spot those differences. 
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